Reasoning for Humans: Clear Thinking in an Uncertain World

PHIL 171

Eric Pacuit

Department of Philosophy University of Maryland pacuit.org All Philosophy majors at UMD are required to take logic. Ann is a Philosophy major at UMD. So, Ann is required to take logic.

 $\forall x(M(x) \rightarrow L(x)), M(a) \models L(a).$

All Philosophy majors at UMD are required to take logic. Ann is a Philosophy major at UMD. So, Ann is required to take logic.

$$\forall x(M(x) \rightarrow L(x)), M(a) \models L(a).$$

- All Philosophy majors at UMD are millionaires. Ann is a Philosophy major at UMD. So, Ann is a millionaire.
- All Democrats voted for Biden. Ann is a Democrat. So, Ann voted for Biden.
- All ravens are black. Tweety is a raven. So, Tweety is black.
- All prime number greater than 2 are odd. 7 is a prime number greater than 2. So, 7 is odd.

• Is $\forall x(M(x) \rightarrow L(x)), \forall xM(x) \Rightarrow \forall xL(x)$ valid?

• Is $\forall x(M(x) \rightarrow L(x)), \forall xM(x) \Rightarrow \forall xL(x)$ valid? Yes.

• Is $\forall x(M(x) \rightarrow L(x)), \exists xM(x) \Rightarrow L(a)$ valid?

• Is $\forall x(M(x) \rightarrow L(x)), \forall xM(x) \Rightarrow \forall xL(x)$ valid? Yes.

• Is $\forall x(M(x) \rightarrow L(x)), \exists xM(x) \Rightarrow L(a)$ valid? No.

$\forall x (M(x) \rightarrow L(x)), \exists x M(x) \not\models L(a)$

There is a way of interpreting the predicates M and L and the individual constant a such that $\forall x(M(x) \rightarrow L(x))$ and $\exists xM(x)$ are both true, but L(a) is false.

$\forall x(M(x) \rightarrow L(x)), \exists x M(x) \not\models L(a)$

There is a way of interpreting the predicates M and L and the individual constant a such that $\forall x(M(x) \rightarrow L(x))$ and $\exists xM(x)$ are both true, but L(a) is false.

For example, consider the set of all integers $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$.

- $M(\cdot)$ means "... is an even integer"
- $L(\cdot)$ means "...is divisible by 2."
- *a* is the number 3.

The analogue of the truth-value assignment for First Order Logic is a **model**. There are two components of a model:

- 1. A collection of objects or items called the **domain**.
- 2. An interpretation that associates with each constant an element of the domain and with each predicate a collection of elements from the domain.

	а	Ь	М	L
1	\checkmark		—	—
2			+	+
3			+	+
4		\checkmark	+	+
5			_	+

- M(a) is false.
- M(b) is true
- L(a) is false

	а	b	Μ	L
1	\checkmark		—	—
2			+	+
3			+	+
4		\checkmark	+	+
5			_	+

- M(a) is false.
- M(b) is true
- L(a) is false
- $\exists x M(x)$ is true
- $\exists x \neg M(x)$ is true

	а	b	М	L
1	\checkmark		—	—
2			+	+
3			+	+
4		\checkmark	+	+
5			—	+

- M(a) is false.
- M(b) is true
- L(a) is false
- $\exists x M(x)$ is true
- $\exists x \neg M(x)$ is true
- $\exists y(\neg M(y) \land \neg L(y))$ is true

	а	b	М	L
1	\checkmark		—	—
2			+	+
3			+	+
4		\checkmark	+	+
5			_	+

- M(a) is false.
- M(b) is true
- L(a) is false
- $\exists x M(x)$ is true
- $\exists x \neg M(x)$ is true
- $\exists y(\neg M(y) \land \neg L(y))$ is true
- $\forall xL(x)$ is false
- $\forall x(M(x) \lor L(x))$ is false
- $\forall x(M(x) \rightarrow L(x))$ is true

	а	b	М	L
1	\checkmark		—	_
2			+	+
3			+	+
4		\checkmark	+	+
5			_	+

 $\forall x (M(x) \to L(x)), \exists x M(x) \not\models L(a)$

- $\forall x(M(x) \rightarrow L(x))$ is true
- $\exists x M(x)$ is true
- L(a) is false

 Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is true? Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is false? Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is true? No Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is false? Yes

Can you find a model in which (P(a) ∧ ∀x ¬P(x)) is true?
Can you find a model in which (P(a) ∧ ∀x ¬P(x)) is false?

 Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is true? No Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is false? Yes

Can you find a model in which (P(a) ∧ ∀x ¬P(x)) is true? No Can you find a model in which (P(a) ∧ ∀x ¬P(x)) is false? Yes

Can you find a model in which (P(a) ∧ ∃x ¬P(x)) is true?
Can you find a model in which (P(a) ∧ ∃x ¬P(x)) is false?

 Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is true? No Can you find a model in which (P(a) ∧ ¬(∃x P(x)) is false? Yes

Can you find a model in which (P(a) ∧ ∀x ¬P(x)) is true? No Can you find a model in which (P(a) ∧ ∀x ¬P(x)) is false? Yes

Can you find a model in which (P(a) ∧ ∃x ¬P(x)) is true? Yes
Can you find a model in which (P(a) ∧ ∃x ¬P(x)) is false? Yes

1. Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is true? Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is false? 1. Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is true? Yes Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is false? No

Can you find a model in which ∀x (P(x) ∨ ¬P(x)) is true?
Can you find a model in which ∀x (P(x) ∨ ¬P(x)) is false?

1. Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is true? Yes Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is false? No

Can you find a model in which ∀x (P(x) ∨ ¬P(x)) is true? Yes
Can you find a model in which ∀x (P(x) ∨ ¬P(x)) is false? No

 Can you find a model in which (∀x (P(x) ∨ ∀x ¬P(x)) is true? Can you find a model in which (∀x (P(x) ∨ ∀x ¬P(x)) is false? 1. Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is true? Yes Can you find a model in which $(\forall x P(x) \lor \neg \forall x P(x))$ is false? No

2. Can you find a model in which $\forall x (P(x) \lor \neg P(x))$ is true? Yes Can you find a model in which $\forall x (P(x) \lor \neg P(x))$ is false? No

3. Can you find a model in which $(\forall x (P(x) \lor \forall x \neg P(x)))$ is true? Yes Can you find a model in which $(\forall x (P(x) \lor \forall x \neg P(x)))$ is false? Yes Can you find a model in which ∀x P(x) → ¬∃x ¬P(x) is true?
Can you find a model in which ∀x P(x) → ¬∃x ¬P(x) is false?

1. Can you find a model in which $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$ is true? Yes Can you find a model in which $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$ is false? No

Can you find a model in which ¬∃x P(x) → ∀x ¬P(x) is true?
Can you find a model in which ¬∃x P(x) → ∀x ¬P(x) is false?

1. Can you find a model in which $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$ is true? Yes Can you find a model in which $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$ is false? No

2. Can you find a model in which $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$ is true? Yes Can you find a model in which $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$ is false? No

Can you find a model in which ∀x P(x) → ∃x P(x) is true?
Can you find a model in which ∀x P(x) → ∃x P(x) is false?

1. Can you find a model in which $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$ is true? Yes Can you find a model in which $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$ is false? No

2. Can you find a model in which $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$ is true? Yes Can you find a model in which $\neg \exists x P(x) \rightarrow \forall x \neg P(x)$ is false? No

3. Can you find a model in which $\forall x P(x) \rightarrow \exists x P(x)$ is true? Yes Can you find a model in which $\forall x P(x) \rightarrow \exists x P(x)$ is false? No? $\exists x P(x) \land \exists x Q(x) \Rightarrow \exists x (P(x) \land Q(x))$

 $\forall x P(x) \land \forall x Q(x) \Rightarrow \forall x (P(x) \land Q(x))$

$$\exists x (P(x) \lor Q(x)) \Rightarrow \exists x P(x) \lor \exists x Q(x)$$

 $\forall x (P(x) \lor Q(x)) \Rightarrow \forall x P(x) \lor \forall x Q(x)$

 $\exists x P(x) \land \exists x Q(x) \not\models \exists x (P(x) \land Q(x))$

 $\forall x P(x) \land \forall x Q(x) \models \forall x (P(x) \land Q(x))$

$$\exists x (P(x) \lor Q(x)) \models \exists x P(x) \lor \exists x Q(x)$$

 $\forall x (P(x) \lor Q(x)) \not\models \forall x P(x) \lor \forall x Q(x)$