Reasoning for Humans: Clear Thinking in an Uncertain World

PHIL 171

Fric Pacuit

Department of Philosophy University of Maryland pacuit.org

Recap: Truth Tables

φ	ψ	$(\varphi \wedge \psi)$	φ	ψ	$(\varphi \lor \psi)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	Т	F	F	Т	Т
F	F	F	F	F	F
		1			ı
φ	ψ	$(\varphi o \psi)$	φ	ψ	$(\varphi \leftrightarrow \psi)$
<i>φ</i> Τ	ψ Τ	$\frac{(\varphi \to \psi)}{T}$	$\frac{\varphi}{T}$	ψ Τ	$\frac{(\varphi \leftrightarrow \psi)}{T}$
	-			-	$\begin{array}{c} (\varphi \leftrightarrow \psi) \\ T \\ F \end{array}$
Т	Т	T	Т	Т	Т
T T F	T F	T F	T	T F	T F

$$egin{array}{c|c} arphi & \neg arphi \\ T & F \\ F & T \\ \hline \end{array}$$

1

Valid Argument:

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false.

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false. (So, any truth-value assignment that makes all the premises true also makes the conclusion true).

Invalid Argument:

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false. (So, any truth-value assignment that makes all the premises true also makes the conclusion true).

Invalid Argument: An argument is invalid just in case it is not valid, i.e., if there is some truth-value assignment that makes the premises true and the conclusion false.

Counterexample: A truth-value assignment that makes the premises of an argument true and its conclusion false is called a counterexample to the argument.

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false. (So, any truth-value assignment that makes all the premises true also makes the conclusion true).

Invalid Argument: An argument is invalid just in case it is not valid, i.e., if there is some truth-value assignment that makes the premises true and the conclusion false.

Counterexample: A truth-value assignment that makes the premises of an argument true and its conclusion false is called a counterexample to the argument.

So, an argument if valid if there are no counterexamples.

$$A \to C$$

$$B \to C$$

$$A \lor B$$

$$\therefore C$$

Α	В	C	$A \rightarrow C$	$B \rightarrow C$	$A \vee B$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

$$A \to C$$

$$B \to C$$

$$A \lor B$$

$$\therefore C$$

Α	В	C	$A \rightarrow C$	$B \rightarrow C$	$A \vee B$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	Т	Т	Т	F
F	F	F	Т	Т	F

Α	В	C	$A \rightarrow C$	$B \rightarrow C$	$A \vee B$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	T
Т	F	F	F	T	T
F	Т	Т	Т	Т	Т
F	Τ	F	Т	F	T
F	F	Т	Т	Т	F
F	F	F	Т	T	F

Α	В	C	$A \rightarrow C$	$B \rightarrow C$	$A \vee B$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	\top	Т	Т	F
F	F	F	Т	Т	F

$$A \to C$$

$$B \to C$$

$$A \lor B$$

$$\therefore C$$

This argument is valid because there is no truth-value assignment that makes the premises true $(A \to C, B \to C \text{ and } A \lor B)$ and the conclusion (C) false.

Α	В	C	$A \rightarrow C$	$B \rightarrow C$	$A \vee B$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	Т	Т	Т	F
F	F	F	Т	Т	F

$$A \to C$$

$$B \to C$$

$$A \lor B$$

$$\therefore C$$

This argument is valid because in every row in which the conclusion (C) is false, at least one of the premises ($A \rightarrow C$, $B \rightarrow C$ or $A \lor B$) is false.

Is the following argument valid or invalid? You must show your answer.

$$(A \lor B)$$

$$(B \to C)$$

$$\therefore (B \land C)$$

$$(A \lor B)$$
$$(B \to C)$$
$$\therefore (B \land C)$$

Α	В	C	$(A \lor B)$	$(B \rightarrow C)$	$(B \wedge C)$
Т	Т	Т	Т	T	Т
Τ	Т	F	Т	F	F
Τ	F	Т	Т	Т	F
Τ	F	F	Т	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	F	Т	F
F	F	F	F	Т	F

$$(A \lor B)$$
$$(B \to C)$$
$$\therefore (B \land C)$$

Α	В	C	$(A \lor B)$	$(B \rightarrow C)$	$(B \wedge C)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	Т	T	F
Т	F	F	Т	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	F	Т	F
F	F	F	F	Т	F

The argument is invalid, because there is a counterexample.

Determine if the following arguments are valid or invalid. (You must explain your answers.)

1.
$$(A \lor B), (B \to C) \Rightarrow (B \land C)$$

2.
$$(A \rightarrow (B \rightarrow C)), (B \land C) \Rightarrow \neg \neg A$$

3.
$$((A \land B) \lor (A \rightarrow \neg B)), (B \rightarrow C) \Rightarrow (\neg C \rightarrow A)$$

4.
$$((A \land B) \rightarrow (B \land C)), (B \land D) \Rightarrow (A \rightarrow (C \rightarrow \neg D))$$