Reasoning for Humans: Clear Thinking in an Uncertain World

PHIL 171

Eric Pacuit

Department of Philosophy University of Maryland pacuit.org

Recap: Truth Tables

Find truth tables for the formulas:

- $P \wedge Q$
- $(P \land Q) \rightarrow P$
- $(P \land Q) \land (\neg P \lor \neg Q)$

	Ρ	Q	$(P \land Q)$	$(P \land Q) ightarrow P$	$(P \land Q) \land (\neg P \lor \neg Q)$
1.	Т	Т	Т	Т	F
2.	Т	F	F	Т	F
3.	F	Т	F	Т	F
4.	F	F	F	Т	F

 $P \wedge Q$ is T in some rows and F in some rows (contingent)

 $(P \land Q) \rightarrow P$ is T in every row (tautology)

 $(P \land Q) \land (\neg P \lor \neg Q)$ is F in every row (contradiction)

 $P \wedge Q$ is T in some rows and F in some rows (contingent)

 $(P \land Q) \rightarrow P$ is T in every row (tautology)

 $(P \land Q) \land (\neg P \lor \neg Q)$ is F in every row (contradiction)

 $P \wedge Q$ is T in some rows and F in some rows (contingent) $(P \wedge Q) \rightarrow P$ is T in every row (tautology) $(P \wedge Q) \wedge (\neg P \lor \neg Q)$ is F in every row (contradiction)

A formula is a **tautology** provided that

A formula is a **tautology** provided that it is true under all truth-value assignments (the only truth value in the column under the formula is T).

A formula is contradictory provided that

A formula is a **tautology** provided that it is true under all truth-value assignments (the only truth value in the column under the formula is T).

A formula is **contradictory** provided that it is false under all truth-value assignments (the only truth value in the column under the formula is F).

A formula is **contingent** provided that

A formula is a **tautology** provided that it is true under all truth-value assignments (the only truth value in the column under the formula is T).

A formula is **contradictory** provided that it is false under all truth-value assignments (the only truth value in the column under the formula is F).

A formula is **contingent** provided that it is true under some truth-value assignments and false under other truth-value assignments (there are both T and F in the column under the formula).

Find truth tables for the formulas

- $P \wedge Q$
- $\neg (P \land Q)$
- $\neg P \lor \neg Q$
- $\neg P \land \neg Q$

	Ρ	Q	$(P \land Q)$	$\neg(P \land Q)$	$(\neg P \lor \neg Q)$	$(\neg P \land \neg Q)$
1.	Т	Т	Т	F	F	F
2.	Т	F	F	Т	Т	F
3.	F	Т	F	Т	Т	F
4.	F	F	F	Т	Т	Т

 $(P \land Q)$ and $\neg (P \land Q)$ are contradictory: they always have opposite truth values

 $(P \land Q)$ and $\neg (P \land Q)$ are **contradictory**: they always have opposite truth values

 $\neg(P \land Q)$ are $(\neg P \lor \neg Q)$ are **tautologically equivalent**: they always have the same truth values

 $(P \land Q)$ are $(\neg P \land \neg Q)$ are **mutually exclusive**: they are never true in the same situation, but may be false in the same situation

 $(\neg P \lor \neg Q)$ are $(\neg P \land \neg Q)$ are **satisfiable**: there is at least on situation in which both are true. Suppose that φ and ψ are two formulas.

Suppose that φ and ψ are two formulas.

 φ and ψ are **tautologically equivalent** provided that every truth-value assignment assigns the same truth value to φ and ψ .

 φ and ψ are **contradictory** provided that every truth-value assignment assigns different truth values to φ and ψ .

 φ and ψ are **mutually exclusive** provided that no truth-value assignment assigns true to both φ and ψ (though they may both be false).

 φ and ψ are **satisfiable** provided that there is a truth-value assignment that assigns true to both φ and ψ .

If yes, then φ and ψ are tautologically equivalent.

Does every truth-value assignment assign different truth values to φ and $\psi?$

If yes, then φ and ψ are contradictory.

If yes, then φ and ψ are tautologically equivalent.

Does every truth-value assignment assign different truth values to φ and $\psi?$

If yes, then φ and ψ are contradictory.

If yes, then φ and ψ are tautologically equivalent.

Does every truth-value assignment assign different truth values to φ and $\psi?$

If yes, then φ and ψ are contradictory.

Is there some truth-value assignment that assigns T to both φ and ψ ? If yes, then φ and ψ are satisfiable. If no, then φ and ψ are mutually exclusive.

If yes, then φ and ψ are tautologically equivalent.

Does every truth-value assignment assign different truth values to φ and $\psi?$

If yes, then φ and ψ are contradictory.

Is there some truth-value assignment that assigns T to both φ and ψ ? If yes, then φ and ψ are satisfiable. If no, then φ and ψ are mutually exclusive.

Recall that $\varphi \leftrightarrow \psi$ is short-hand for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. What is the truth table for $\varphi \leftrightarrow \psi$?

Recall that $\varphi \leftrightarrow \psi$ is short-hand for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. What is the truth table for $\varphi \leftrightarrow \psi$?

Recall that $\varphi \leftrightarrow \psi$ is short-hand for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. What is the truth table for $\varphi \leftrightarrow \psi$?

