Reasoning for Humans: Clear Thinking in an Uncertain World

PHIL 171

Fric Pacuit

Department of Philosophy University of Maryland pacuit.org

Recap: Truth Tables

X	Y	$(X \wedge Y)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

$$\begin{array}{c|ccc} X & Y & (X \lor Y) \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ \end{array}$$

X	Y	$(X \rightarrow Y)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Bi-conditional

Suppose that $X \leftrightarrow Y$ is short-hand for $(X \to Y) \land (Y \to X)$. What is the truth table for $X \leftrightarrow Y$?

Χ	Y	$(X \leftrightarrow Y)$
Т	Т	
Т	F	
F	Т	
F	F	

4

Bi-conditional

Suppose that $X \leftrightarrow Y$ is short-hand for $(X \to Y) \land (Y \to X)$. What is the truth table for $X \leftrightarrow Y$?

4

Bi-conditional

Suppose that $X \leftrightarrow Y$ is short-hand for $(X \to Y) \land (Y \to X)$. What is the truth table for $X \leftrightarrow Y$?

4

Classifying Arguments

Α	В	C	$(A \wedge B)$	$(A \lor C)$
Т	Т	Т		
Т	Т	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		
	'	'		

Is it possible that the formulas $(A \wedge B)$ and $(A \vee C)$ can both be true at the same time? Yes...There are two truth assignments that make both formulas true.

Α	В	C	$(A \wedge B)$	$(A \lor C)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	F	Т
Т	F	F	F	T
F	Т	Т	F	Т
F	Τ	F	F	F
F	F	Т	F	Т
F	F	F	F	F

Α	В	C	$\neg A$	$(\neg A \wedge B)$	$(A \lor C)$	$\neg C$
Т	Т	Τ				
Т	Τ	F				
Т	F	Т				
Т	F	F				
F	Τ	Т				
F	Τ	F				
F	F	Т				
F	F	F				

Α	В	C	$\neg A$	$(\neg A \wedge B)$	$(A \lor C)$	$\neg C$
Т	Т	Т	F	F	Т	
Т	Т	F	F	F	T	
Т	F	Т	F	F	Т	
Т	F	F	F	F	T	
F	Τ	Т	Т	Т	T	
F	Т	F	Т	Т	F	
F	F	Т	Т	F	Т	
F	F	F	Т	F	F	

Α	В	С	$\neg A$	$(\neg A \wedge B)$	$(A \lor C)$	$\neg C$
Т	Т	Т	F	F	Т	F
Т	Τ	F	F	F	Т	Т
Т	F	Т	F	F	Т	F
Т	F	F	F	F	Т	Т
F	Τ	Т	Т	Т	Т	F
F	Τ	F	Т	Т	F	Т
F	F	Т	Т	F	Т	F
F	F	F	Т	F	F	Т

Is it possible that the formulas $(\neg A \land B)$ and $(A \lor C)$ and $\neg C$ can all be true at the same time? No…there is no row in which all these formulas are true.

Α	В	C	$\neg A$	$(\neg A \wedge B)$	$(A \lor C)$	$\neg C$
Т	Т	Т	F	F	Т	F
Т	Т	F	F	F	Т	Т
Т	F	Т	F	F	Т	F
Т	F	F	F	F	Т	Т
F	Т	Т	Т	Т	Т	F
F	Τ	F	Т	F	F	Т
F	F	Т	Т	F	Т	F
F	F	F	Т	F	F	Т

Valid Argument:

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false.

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false. (So, any truth-value assignment that makes all the premises true also makes the conclusion true).

Invalid Argument:

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false. (So, any truth-value assignment that makes all the premises true also makes the conclusion true).

Invalid Argument: An argument is invalid just in case it is not valid, i.e., if there is some truth-value assignment that makes the premises true and the conclusion false.

Counterexample: A truth-value assignment that makes the premises of an argument true and its conclusion false is called a counterexample to the argument.

Valid Argument: An argument is valid provided that there is no truth value assignment that makes all the premises true and the conclusion false. (So, any truth-value assignment that makes all the premises true also makes the conclusion true).

Invalid Argument: An argument is invalid just in case it is not valid, i.e., if there is some truth-value assignment that makes the premises true and the conclusion false.

Counterexample: A truth-value assignment that makes the premises of an argument true and its conclusion false is called a counterexample to the argument.

So, an argument if valid if there are no counterexamples.

Notation

$$X_1,\ldots,X_n\Rightarrow Y$$
:

An argument with premises X_1, \ldots, X_n and conclusion Y.

$$X_1,\ldots,X_n\models Y$$
:

A valid argument with premises X_1, \ldots, X_n and conclusion Y.

$$X_1,\ldots,X_n\not\models Y$$
:

An invalid argument with premises X_1, \ldots, X_n and conclusion Y.

$$A \to B$$

$$A$$

$$\therefore B$$

Is this argument valid?

$$A \rightarrow B$$

$$A$$

$$\therefore B$$

Is this argument valid? Yes.

$$\begin{array}{c}
A \to B \\
A \\
\hline
\vdots B
\end{array}$$

Is this argument valid? Yes. Why?

$$\begin{array}{c}
A \to B \\
A \\
\hline
\vdots B
\end{array}$$

$$\begin{array}{c|cccc} A & B & A \rightarrow B \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

$$\begin{array}{c}
A \to B \\
A \\
\hline
\vdots \quad B
\end{array}$$

Modus Ponens is valid because there is no truth-value assignment that makes the premises true $(A, A \rightarrow B)$ and the conclusion (B) false.

$$A \to B, A \models B$$

$$\begin{array}{c}
A \to B \\
B \\
\hline
\therefore A
\end{array}$$

Is this argument valid?

$$\begin{array}{c}
A \to B \\
B \\
\hline
\therefore A
\end{array}$$

Is this argument valid? No.

$$\begin{array}{c}
A \to B \\
B \\
\hline
\therefore A
\end{array}$$

Is this argument valid? No.Why?

$$\begin{array}{c}
A \to B \\
B \\
\hline
\therefore A
\end{array}$$

$$\begin{array}{c|cccc} A & B & A \rightarrow B \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

$$\begin{array}{c|ccc} A & B & A \rightarrow B \\ \hline T & T & T \\ T & F & F \\ \hline F & T & T \\ F & F & T \\ \end{array}$$

$$\begin{array}{c}
A \to B \\
B \\
\hline
\therefore A
\end{array}$$

Affirming the Consequent is not valid because there is a truth-value assignment that makes the premises true and the conclusion false. Namely, the truth-value function that sets A to F and B to T.

$$A \rightarrow B, B \not\models A$$

$$\begin{array}{c}
A \lor B \\
\neg A \\
\hline
\vdots B
\end{array}$$

$$\begin{array}{c}
A \lor B \\
\neg A \\
\hline
\vdots B
\end{array}$$

Disjunctive Syllogism is valid because there is no truth-value assignment that make the premises true $(\neg A \text{ and } A \lor B)$ and the conclusion (B) false.

$$A \lor B, \neg A \models B$$